

DCT-1603010102010200 Seat No. _____

M. Sc. (Sem. I) (CBCS) Examination

August - 2022 Physics : CT-02

(Solid State Electronic Devices & Circuits) (New Course)

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions: (1) All questions carry equal marks.

(2) Attempt any five questions out of 10 questions.

1 Answer the following:

14

- (a) Calculate transconductance (g_m) of JFET having the parameters: IDSS = 16 mA, Vp = -4V for drain current ID = 4 mA
- (b) Differentiate: Avalanche and Zener breakdown mechanisms.
- (c) Implement two input OR gate by using all NAND gates.
- (d) Distinguish between direct and indirect band gap materials.
- (e) Define fan out for Transistor transistor logic (TTL).
- (f) Calculate wavelength (λ g) of light emission for GaAs having band gap energy E_g = 1.44 eV.
- (g) Prove that product of all the maxterms of a Boolean function of N-variable is 0.

2 Answer the following:

14

- (a) What is the relation between photometric unit lumen and radiometric unit watt?
- (b) What is the operational principle of Solar cell?
- (c) Obtain complement of the following Boolean function : $F(x, y, z) = x \cdot (y \cdot z' + y \cdot z)$
- (d) Draw JFET transfer characteristic : drain current versus gate to source voltage and define Pinch-off voltage.

- (e) What is the key difference in the physics of light emitting diode and semiconductor laser?
- (f) What is the advantage of MOS logic over other logic families?
- (g) Write Boolean expression for two input exclusive OR gate.
- 3 (a) Compare: BJT and JFET. Describe the construction 7 of N-channel JFET and explain its drain-source characteristics.
 - (b) Discuss various biasing methods for JFET. 7
- 4 (a) Draw the circuit of 2-input NAND gate using 7 transistor-transistor (TTL) logic and explain its operation. Explain current sinking and current sourcing in TTL.
 - (b) Write a detailed note on MOS logic family. 7
- 5 (a) A logic circuit having three inputs should produce 7 high output for its input binary numbers:
 011, 101, 110 and 111. Design the logic circuit using K-Map and draw the circuit using gates.
 - (b) Simplify the following Boolean function using Karnaugh 7 Map method:

$$F(w, x, y, z) = \sum (2, 6, 14, 10)$$
 and don't cares are:
 $d(w, x, y, z) = \sum (0, 4, 9)$.

- 6 (a) Draw basic structure and symbol of Silicon Controlled
 Rectifier. Explain the current voltage characteristics of
 SCR and derive anode current expression for forward
 blocking state.
 - (b) Write a note on characteristic and application of TRIAC.

- 7 (a) Discuss in detail the physics of photoconductive detectors hence derive expression for photoconductive gain. What are the photoconductive materials?
 - (b) Write detailed note on photo diode and PIN photo diode.
- 8 (a) What is a thermistor? Discuss its characteristic 7 and application
 - (b) Discuss briefly V-I characteristic of zener diode. 7

 Draw the circuit of Zener diode voltage regulator and explain its operation.
- 9 (a) Explain working of UJT relaxation oscillator with neat diagrams and derive formula for output frequency.
 - (b) Write a note on transmissive field effect and reflective 7 type liquid crystal displays.
- 10 (a) Explain the physics of light emission in LED. Explain 7 in detail radiative recombination processes. Give a brief note on LED structure and LED materials.
 - (b) Write a detailed note on semiconductor laser. 7

7